itemdb
Release 1.1.2

Apr 20, 2023

Contents:

1 Installing itemdb 3
2 Guide 5
2.1 Introduction e e e e 5
2.2 Openingadatabase e e e e e e e e e e e e e e e 5
2.3 Creatingtablesandindices L e e e e e e e e 6
24 Addsomeitems e e e e e e e e e e e e e e e e 6
2.5 Make some qQUETIES v v v it e 7
2.6 Avoiding SQL injection e e e e 7
2.7 TransactionS e e e e e e e e e e e e e e e e 7
2.8 Database maintenance oo e e e e e e e e e e e 8
2.9 GOINZ ASYNC .+ . v v o v e e e e e e e e e e e e e e e e e e e 8
3 Reference 9
3.1 TheltemDBclass e 9
3.2 TheAsyncltemDB class L e 12
3.3 Theasyncify function e 13
4 Indices and tables 15
Python Module Index 17
Index 19

itemdb, Release 1.1.2

The itemdb library allows you to store and retrieve Python dicts in a database on the local filesystem, in an easy, fast,
and reliable way.

Based on the rock-solid and ACID compliant SQLite, but with easy and explicit transactions using a with statement.
It provides a simple object-based API, with the flexibility to store (JSON-compatible) items with arbitrary fields, and
add indices when needed.

Contents: 1

itemdb, Release 1.1.2

2 Contents:

CHAPTER 1

Installing itemdb

The itemdb library is pure Python and has zero dependencies.

pip install itemdb

itemdb, Release 1.1.2

4 Chapter 1. Installing itemdb

CHAPTER 2

Guide

2.1 Introduction

The itemdb library allows you to store and retrieve Python dicts in a database on the local filesystem, in an easy, fast,
and reliable way.

To be more precise: it is an ACID compliant transactional database for storage and retrieval of JSON-compatible dict
items. That sounds very technical; let’s break it down:

* ACID means it has desirable database features of atomicity, consistency, isolation and durability. We’ll get back
to these when we talk about transactions.

* The itemdb API focuses on making transactions easy and explicit.

¢ JSON is used to serialize the dict items, so the values in the dicts are limited to: None, bool, int, float,
str,list,dict.

In practice, itemdb uses the rock-solid SQLite, and provides an object-based API that requires no knowledge of SQL.

You can use itemdb in a wide variety of applications. This includes web-servers, though once your traffic scales up,
you may want to consider something like PostgreSQL or perhasps a hosted db.

2.2 Opening a database

In itemdb (like SQLite) each database is represented as a file. One can also use " :memory: " to create an in-memory
database for testing/demo purposes.

db = ItemDB (filename)
db = ItemDB(":memory:")

https://en.wikipedia.org/wiki/ACID
https://sqlite.org

itemdb, Release 1.1.2

2.3 Creating tables and indices

Each database consists of tables, and the tables contain the items. A “table” is what is also called “table” in SQL
databases, a “collection” in MongoDB, and an “object store” in IndexedDB.

You can create a table using ensure_table (). It is safe to call this before every time that you use the database,
because it returns fast if the table already exist:

db.ensure_table ("some_table _name")

In the same call we can also specify indices. Indicices represent fields in the items that are indexed, so that they can
be used to retrieve items fast, using select (), count () and delete ().

@y

Indices can also be prefixed with a “!”, marking the field as mandatory and unique, making it possible to identify

items.

db.ensure_table ("persons", "!name", "age")

We can now select () items based on the name and age fields, and no two items can have the same value for
name.

Note: No new fields can be marked unique once the table has been created.

Note: Inthe examples below we mark the “name” field as unique, but strictly speaking this is wrong, because different
persons can have the same name. Another form of ID would be more appropriate in real use-cases.

2.4 Add some items

An “item” is what is called a “row” in SQL databases, a “document” in MongoDB, and an “object” in IndexedDB.
Let’s add some to our table!

with db:
db.put_one ("persons", name="Jane", age=22)
db.put_one ("persons", name="John", age=18, fav_number=7)
db.put ("persons", {"name": "Guido"}, {"name": "Anne", "age": 42})

You can see how we use with db here. This is because itemdb requires using a transaction when making changes to
the database. Everything inside the with statement is a single transaction. More on that later.

You can also see that with put_one () we can use keyword arguments to specify fields, while with put () we can
specify multiple items, each items a dict.

The dictionary can contain as many fields as you want, including sub-dicts and lists. Although the age field is indexed,
it is not mandatory (you can select items with missing age using db . select ("persons", "age is NULL")).

Since the name field is unique, if we put an item with an existing name, it will simply update it:

John had his birthday and changed his favourite number
with db:
db.put_one ("persons", name="John", age=19, fav_number=8)

6 Chapter 2. Guide

itemdb, Release 1.1.2

2.5 Make some queries

Usee.g. count (), select () to query the database:

>>> db.count_all ("persons")
4

>>> db.select ("persons", "age > ?", 20)

[{'name': '"Jane', 'age': 22}, {'name': 'Anne', 'age': 42}]
>>> select_name = "John"

>>> db.select_one("persons", "name = ?", select_name)
{'name': 'John', 'age': 19, 'fav_number': 8}

2.6 Avoiding SQL injection

SQL injection is a technique by which a potential hacker could access your database to get access or destroy data. The
common path for SQL injection is to write SQL code in an end-user input field.

For example, imagine a website that sells paintings, which may have a field for the minimum size. You’ll want to use
the given size in a query (e.g. a db.select ()) so you can show the user all paintings that qualify. Now imagine
that an attacker writes SQL code in that input field. If the input is not sanitized, your db is compromised!

This is the reason for the ? notation used throughout these docs - the actual arguments are passed to SQLite in a safe
way. It’s a good habit to always provide query arguments this way.

2.7 Transactions

Transactions are an important concept in databases. In ACID databases (like itemdb) it has a number of features:
* A transaction is atomic (either the whole transaction is applied, or the whole transaction is not applied)

* A transaction is applied in isolation, even when multiple processes are interacting with the database at the same
time. This means that when a transaction is in progress, another process/thread that wants to apply a transaction
that “intersects” with the ongoing operation, it will wait. (This even works for multiple Docker containers
operating on the same SQLite database.)

e The remaining elements of ACID (consistency and durability) mean that the database always remains in a
healthy state. Even on a power outage or if the system crashes halfway a transaction.

In itemdb, transactions are easy, using a context manager. Let’s have a look at some examples:

Increasing a value is recommended to do in a transaction.
with db:
player = db.select ("players", "name == ?", player_name)
player["position"] += 2
db.put ("players", player)

The below has no effect: the transaction fails and is rolled back
with db:

db.put_one ("persons", name="John", age=21, fav_number=8)

raise RuntimeError ()

2.5. Make some queries 7

https://en.wikipedia.org/wiki/SQL_injection
https://xkcd.com/327/

itemdb, Release 1.1.2

2.8 Database maintenance

Sometimes, you may want to add unique keys to a table or remove existing indices. This is possible by copying the
items to a new table and then replacing the new table with the old. By doing this inside a transaction, it can be done
safely:

with db:

db.ensure_table ("persons2", "!id", "name", "age")

for i, person in enumerate (db.select_all ("persons")):
Make sure each person has an id, e.g.:
person["id"] = 1i
db.put ("persons2", person)

db.delete_table ("persons")

db.rename_table ("persons2", "persons")

At the time of writing, itemdb does not provide an API for backups or vacuuming, but it’s just SQLite under the hood,
so you can use the common methods.

2.9 Going Async

The API of ItemDB is synchronous. It operates with the filesystem, so it can benefit from async use a lot.

There are two ways to make your code async. The first is by using the AsyncItemDB class. It has the exact same
API as TtemDB, but all its methods are async. Note that you must also use async with.

The second approach is to asyncify a synchronous function. The idea of this approach is to do all itemdb operations
inside a function and then wrap that function if you want to use it in an async environment. Consider the following
example of a web server:

@itemdb.asycify
def push_items (filename, items):
db = ItemDB (filename)
db.ensure_table ("my_table", "!id", "mtime")

with db:
ag:put("myitable", items)
async def my_request_handler (request) :
#.éecause we decorated the function with asyncify,
we can now await 1it, while the db interaction

occurs in a separate thread.
await push_items (filename, items)

Of the two mentioned approaches, the asyncify-approach is slightly more efficient, because it makes use of a thread
pool, and only switches to a thread for the duration of the function you’ve asyncified. However, using AsyncItemDB
probably makes your code easier to read and maintain, which is probably worth more.

8 Chapter 2. Guide

https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.backup
https://www.sqlite.org/lang_vacuum.html

CHAPTER 3

Reference

3.1 The ItemDB class

class itemdb.ItemDB (filename)
A transactional database for storage and retrieval of dict items.

Parameters filename (str)— The file to open. Use “:memory:” for an in-memory db.

The items in the database can be any JSON serializable dictionary. Indices can be defined for specific fields to
enable fast selection of items based on these fields. Indices can be marked as unique to make a field mandatory
and identify items based on that field.

Transactions are done by using the with statement, and are mandatory for all operations that write to the
database.

mtime
The time that the database file was last modified, as a Unix timestamp.

Is -1 if the file did not exist, or if the filename is not represented on the filesystem.

close ()
Close the database connection.

This will be automatically called when the instance is deleted. But since it can be held e.g. in a traceback,
consider using with closing (db) :.

get_table_names ()
Return a (sorted) list of table names present in the database.

get_indices (fable_name)
Get a set of index names for the given table.

Parameters table_name (str)— The name of the table to get the indices for. 7o avoid SQL
injection, this arg should not be based on unsafe data.

Names prefixed with “!” represent fields that are required and unique. Raises KeyError if the table does
not exist.

itemdb, Release 1.1.2

ensure_table (table_name, *indices)
Ensure that the given table exists and has the given indices.

Parameters

* table_name (str)- The name of the table to make sure exists. To avoid SQL injection,
this arg should not be based on unsafe data.

* indices (varargs) — A sequence of strings, representing index names. Fields that are
indexed can be queried with e.g. select (). To avoid SQL injection, this arg should not
be based on unsafe data.

)

If an index name is prefixed with “!”, it indicates a field that is mandatory and unique. Note that new
unique indices cannot be added when the table already exist.

This method returns as quickly as possible when the table already exists and has the appropriate indices.
Returns the ItemDB object, so calls to this method can be stacked.

Although this call may modify the database, one does not need to call this in a transaction.

delete_table (table_name)
Delete the table with the given name.

Parameters table_name (str) — The name of the table to delete. To avoid SQL injection,
this arg should not be based on unsafe data.

Be aware that this deletes the whole table, including all of its items.

This method must be called within a transaction. Can raise KeyError if an invalid table is given, or [OError
if not used within a transaction

rename_table (ftable_name, new_table_name)
Rename a table.

Parameters

* table_name (str) — The current name of the table. To avoid SQL injection, this arg
should not be based on unsafe data.

* new_table_name (str) - The new name. To avoid SQL injection, this arg should not
be based on unsafe data.

This method must be called within a transaction. Can raise KeyError if an invalid table is given, or [OError
if not used within a transaction

count_all (table_name)
Get the total number of items in the given table.

count (table_name, query, *save_args)
Get the number of items in the given table that match the given query.

Parameters

* table_name (str)— The name of the table to count items in. To avoid SQL injection,
this arg should not be based on unsafe data.

* query (str)— The query to select items on. To avoid SQL injection, this arg should not
be based on unsafe data; use save_args for end-user input.

* save_args (varargs) — The values to select items on.

Examples:

10

Chapter 3. Reference

itemdb, Release 1.1.2

Count the persons older than 20

db.count ("persons", "age > ?", 20)

Count the persons older than a given value

db.count ("persons", "age > ?", min_age)

Use AND and OR for more precise queries

db.count ("persons", "age > ? AND age < ?", min_age, max_age)

See select () for details on queries.

Can raise KeyError if an invalid table is given, IndexError if an invalid field is used in the query, or
sqlite3.OperationalError for an invalid query.

select_all (table_name)
Get all items in the given table. See select () for details.

select (table_name, query, *save_args)
Get the items in the given table that match the given query.

Parameters

* table_name (str)— The name of the table to select items in. To avoid SQL injection,
this arg should not be based on unsafe data.

* query (str)— The query to select items on. To avoid SQL injection, this arg should not
be based on unsafe data; use save_args for end-user input.

* save_args (varargs) — The values to select items on.

The query follows SQLite syntax and can only include indexed fields. If needed, use ensure_table() to add
indices. The query is always fast (which is why this method is called ‘select’, and not ‘search’).

Examples:

Select the persons older than 20

db.select ("persons", "age > ?", 20)

Select the persons older than a given age

db.select ("persons", "age > ?", min_age)

Use AND and OR for more precise queries

db.select ("persons", "age > ? AND age < ?", min_age, max_age)

There is no method to filter items bases on non-indexed fields, because this is easy using a list comprehen-

sion, e.g.:
items = db.select_all ("persons")
items = [1i for i1 in items if i["age"] > 20]

Can raise KeyError if an invalid table is given, IndexError if an invalid field is used in the query, or
sqlite3.OperationalError for an invalid query.

select_one (table_name, query, *args)
Get the first item in the given table that match the given query.

Parameters

* table_name (str)— The name of the table to select an item in. 7o avoid SQL injection,
this arg should not be based on unsafe data.

* query (str)— The query to select the item on. To avoid SQL injection, this arg should
not be based on unsafe data; use save_args for end-user input.

* save_args (varargs) — The values to select the item on.

3.1.

The ItemDB class 11

itemdb, Release 1.1.2

Returns None if there was no match. See select () for details.

put (table_name, *items)
Put one or more items into the given table.

Parameters

* table_name (str)— The name of the table to put the item(s) in. 7o avoid SQL injection,
this arg should not be based on unsafe data.

* items (varargs)— The dicts to add. Keys that match an index can later be used for fast
querying.
This method must be called within a transaction. Can raise KeyError if an invalid table is given, IOError

if not used within a transaction, TypeError if an item is not a (JSON serializable) dict, or IndexError if an
item does not have a required field.

put_one (table_name, **item)
Put an item into the given table using kwargs.

Parameters

* table_name (str)—The name of the table to put the item(s) in. 7o avoid SQL injection,
this arg should not be based on unsafe data.

e item (kwargs) — The dict to add. Keys that match an index can later be used for fast
querying.
This method must be called within a transaction.

delete (table_name, query, *save_args)
Delete items from the given table.

Parameters

* table_name (str)— The name of the table to delete items from. To avoid SQL injec-
tion, this arg should not be based on unsafe data.

* query (str)— The query to select the items to delete. To avoid SQL injection, this arg
should not be based on unsafe data; use save_args for end-user input.

* save_args (varargs) — The values to select the item on.

Examples:

Delete the persons older than 20

db.delete ("persons", "age > 2", 20)

Delete the persons older than a given age

db.delete ("persons", "age > ?", min_age)

Use AND and OR for more precise queries

db.delete ("persons", "age > ? AND age < ?", min_age, max_age)

See select () for details on queries.

This method must be called within a transaction. Can raise KeyError if an invalid table is given, IOError if
not used within a transaction, IndexError if an invalid field is used in the query, or sqlite3.OperationalError
for an invalid query.

3.2 The AsyncltemDB class

class itemdb.AsyncItemDB
An async version of ItemDB. The API is exactly the same, except that all methods are async, and one must use

12 Chapter 3. Reference

itemdb, Release 1.1.2

async with instead of the normal with.

3.3 The asyncify function

itemdb.asyncify (func)
Wrap a normal function into an awaitable co-routine. Can be used as a decorator.

The original function will be executed in a separate thread. This allows async code to execute io-bound code
(like querying a sqlite database) without stalling.

Note that the code in func must be thread-safe. It’s probably best to isolate the io-bound parts of your code and
only wrap these.

3.3. The asyncify function 13

itemdb, Release 1.1.2

14 Chapter 3. Reference

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

15

itemdb, Release 1.1.2

16 Chapter 4. Indices and tables

Python Module Index

itemdb, ??

17

itemdb, Release 1.1.2

18 Python Module Index

Index

A

asyncify () (in module itemdb), 13
AsyncItemDB (class in itemdb), 12

C

close () (itemdb.ItemDB method), 9
count () (itemdb.IltemDB method), 10
count_all () (itemdb.ItemDB method), 10

D

delete () (itemdb.ItemDB method), 12
delete_table () (itemdb.ItemDB method), 10

E

ensure_table () (itemdb.ItemDB method), 9

G

get_indices () (itemdb.ItemDB method), 9
get_table_names () (itemdb.ItemDB method), 9

ItemDB (class in itemdb), 9
itemdb (module), 1

M

mt ime (itemdb.ltemDB attribute), 9

P

put () (itemdb.ltemDB method), 12
put_one () (itemdb.IltemDB method), 12

R

rename_table () (itemdb.ltemDB method), 10

S

select () (itemdb.ItemDB method), 11
select_all () (itemdb.ItemDB method), 11
select_one () (itemdb.ItemDB method), 11

19

	Installing itemdb
	Guide
	Introduction
	Opening a database
	Creating tables and indices
	Add some items
	Make some queries
	Avoiding SQL injection
	Transactions
	Database maintenance
	Going Async

	Reference
	The ItemDB class
	The AsyncItemDB class
	The asyncify function

	Indices and tables
	Python Module Index
	Index

